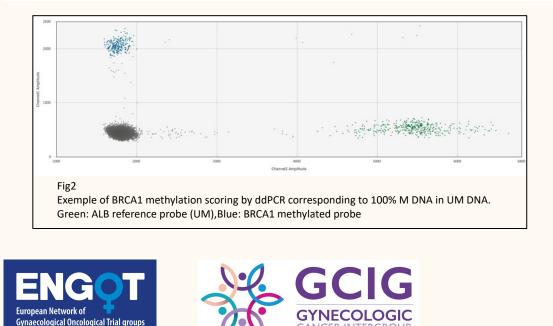
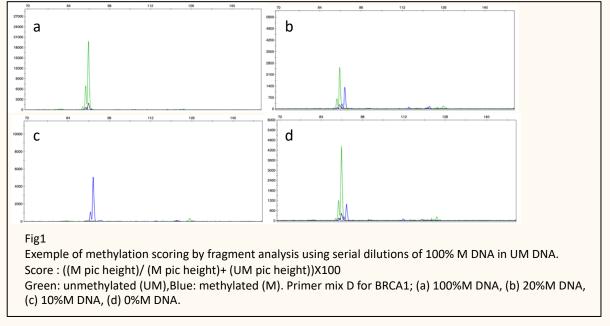
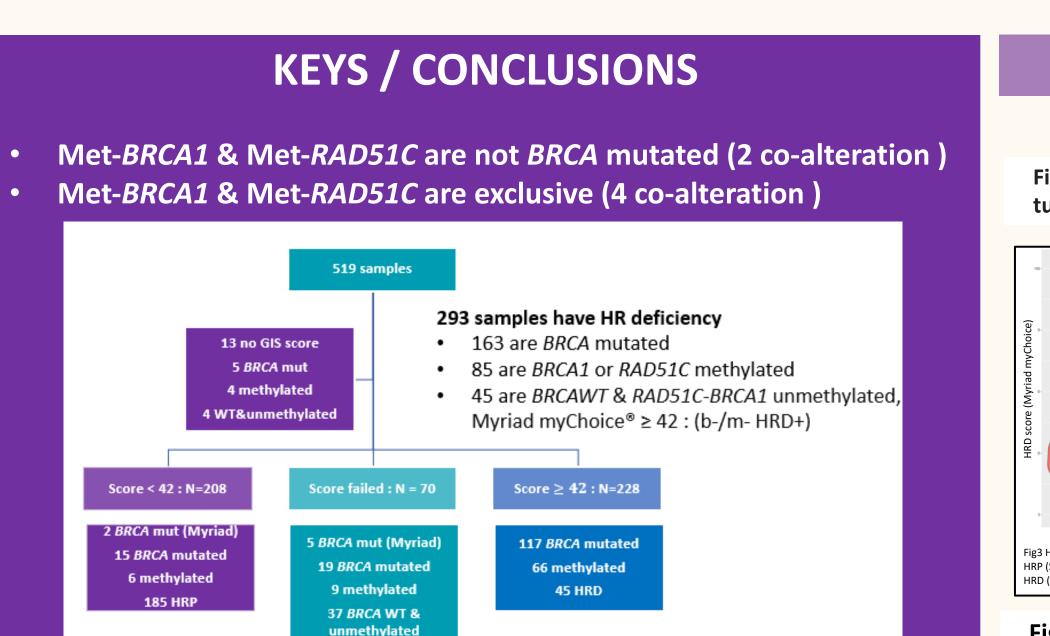


Abstract 406674: BRCA1 and RAD51 Methylation impact on advanced ovarian cancer patient outcome: a PAOLA-1 ancillary study

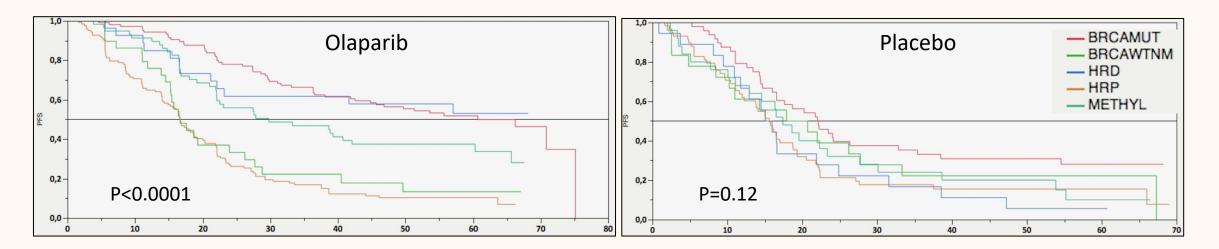

Blons H.^{1,2,3}, Abdelli J.², Taly V.², Mulot C.², Laurent-Puig P.^{2,3}, You B.⁴, Harter P.⁵, Lorusso D.⁶, García-García Y.⁷, Schauer C.⁸, Hietanen S.⁹, Colombo N.^{10,11}, Vergote I.¹², Kobayashi H.¹³, De La Motte Rouge T.¹⁴, Buderath P.¹⁵, Cecere S. C ¹⁶, Bataillon G.¹⁷, Pujade-Lauraine E.¹⁸, Ray-Coquard I. ¹⁹ - Department of Biochemistry, Pharmacogenetics and Molecular Oncology, Paris Cancer Institute CARPEM, APHP.Centre, Paris, France 3 – Department of Gynecologic Oncology, Kliniken Essen, Germany and AGO, Germany 6 – Fondazione Policlinico Universitá de Paris, France 3 – Department of Gynecology, Kliniken Essen, Germany and AGO, Germany 6 – Fondazione Policlinico Universitario A. Gemelli IRCCS and Catholic University of Sacred Heart, Rom taly and MITO, Italy 7 - Parc Taulí Hospital Universitari, Barcelona, Spain 8 - Hospital Barmherzige Brüder Graz, Graz, Austria and AGO Aut, Austria 9 - Department of Gynecologic Oncology, Turku University Hospital, European Union, and BGOG, Belgium, European Union 13 - University Hospital Leuven, Leuven, Cancer Institute, Leuven, Belgium, European Union, and BGOG, Belgium, European Union 13 - University Hospital Leuven, Leuven, European Union, and BGOG, Belgium, European Union 13 - University Hospital Leuven, European Union, and BGOG, Belgium, European Union 13 - University Hospital Leuven, European Union 14 - Department of Medicine and Surgery, University Hospital Leuven, European Union, and BGOG, Belgium, European Union 14 - University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department of Concology, Turku University Hospital Leuven, European Union 14 - Department Vende Concology, Turku University Hospital Leuve Dept. of Obstetrics and Gynecology, Faculty of Medicine, Kagoshima University, Kagoshima, Japan, and GOTIC, Japan 14 – Centre Eugène Marquis, Rennes, France and GINECO, France 15 – Universitätsklinikum Essen, Germany, and AGO, Germany, and AGO, Germany, and AGO, Germany, and AGO, Germany 16 - Department, ARCAGY Research, Paris, and AGO, Germany 16 - Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy and MITO, Italy and MITO, Italy and AGO, Germany 16 - Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy and AGO, Germany, and AGO, Germany 16 - Department of Pathology, Istituto Nazionale Tumori IRCCS Fondazione G. Pascale, Napoli, Italy and MITO, Italy and AGO, Germany, and AGO, Germany 16 - Department, ARCAGY Research, Paris, and GINECO, France 19 – Department of Medical Oncology, Centre Léon Berard, Lyon, and GINECO, Franci

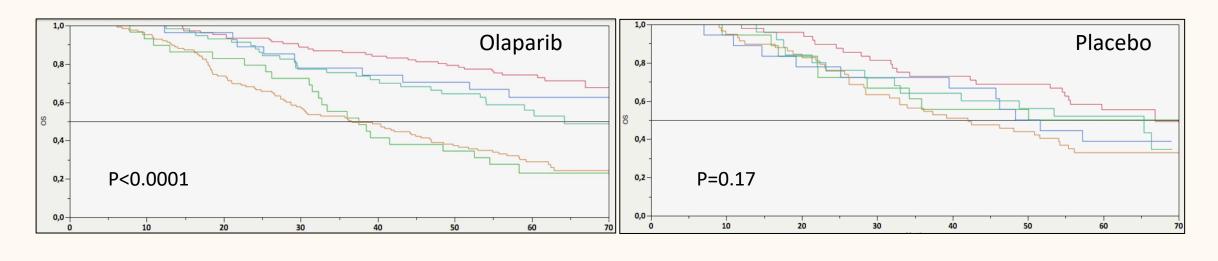

INTRODUCTION / BACKGROUND


- The bevacizumab(bev)/olaparib(ola) maintenance regimen was approved for women affected with **BRCA-mutated (BRCAm) and homologous recombination** deficiency (HRD) high-grade ovarian cancer (HGOC), based on a greater progression-free survival (PFS) compared to bevacizumab alone in the PAOLA-1/ENGOT-ov25 trial (NCT02477644).
- Homologous recombination DNA repair (HRR) is an important mechanism by which double-stranded DNA breaks can be corrected. It depends upon properly functioning BRCA1-2 proteins and many others including RAD51C.
- HRD is observed in 50% of HGOC and identifies patients likely to respond to PARP inhibitors such as olaparib and is **scored by various genomic instability scores** as Myriad myChoice[®] or other tests developed in the Engot program
- **HRD testing is challenging** due to an important rate of non informative results, its dependence on high throughput sequencing devices and costs.
- Here, we evaluated the validity of scoring *BRCA1* and *RAD51C* methylation to identify patients that would benefit from ola + bev versus bev alone as maintenance therapy.

METHODOLOGY

- **519 tumor DNA samples** were available for methylation analysis (348 randomized to ola+bev and 171 to bev+placebo)
- BRCA1 and RAD51C methylation was analyzed from bisulfite converted DNAs using MS-ddPCR (droplet digital PCR, Bio-Rad) (Fig1) and methylation specific PCR (MS-**PCR)** (3730xl Genetic Analyzer, Thermofischer Scientific) (Fig2)
- 3 CpG regions analyzed for *BRCA1*, 2 CpG for *RAD51C* (detailed methodology available at request)
- Methylation status was correlated to clinical data, BRCA1/2 mutations, GIS and HRD scores, PFS and OS. R (r-project.org/) and JMP software version 10.0 were used for statistical analysis. A p-value < 0.05 was considered significant.

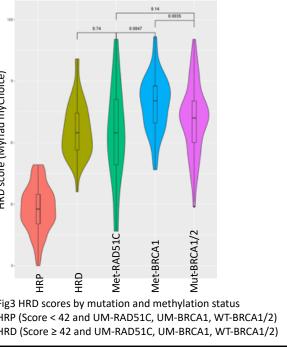

- Met-BRCA1 and Meth -RAD51C benefit from ola+bev maintenance
- Methylation assessment coupled with *BRCA1-2* somatic testing allows the identification of 85% (248/293) of HRD+ high grade AOC.


	BRCAmut		met		b-/m- HRD+		HRP		
	Olaparib	placebo	olaparib	placebo	olaparib	placebo	olaparib	placebo	
N	106	50	59	26	31	20	152	75	
Median PFS1	66.3	22.0	29.8	17.4	57.1	16.6	16.7	15.1	
	[42.6-75.2]	[16.6-26.3]	[22.0-42.1]	[11.1-27.7]	[18.7-NR]	[11.8-24.9]	[15.3-18.8]	[14.0-18.7]	
HR	0.42 [0.27-0.66]		0.49 [0.29-0.84]		0.34 [0.17-0.67]		0.9 [0.73-1.34]		
Median OS	NR	66.8	64.3	65.4	NR	54.4	36.6	42.1	
		[55.6-NR]	[53.3-NR]	[32.3-NR]	[38.5-NR]	[39.9-NR]	[30.5-44.9]	[28.7-54.2]	
5-years survival	75%	54%	56%	52%	54%	44%	28%	35%	
HR	0.52 [0.30-0.92]		0.76 [0.42-1.50]		0.78 [0.35-1.76]		1.2 [0.86-1.71]		

Methylation testing is a cost effective method to identify **HGOC** patients that benefit from ola+bev maintenance

ACKNOWLEDGMENTS

- Thanks to all the patients and their families, investigators and study teams, which allowed the collection of the biological material for the translational research projects.
- GINECO Translational Department for global organization. A. Degnieau and E. Glais from GINECO tumor bank who prepared the biological samples.


- 5329-5333.

RESULTS

Fig3: Met-BRCA1 (13%) or met-RAD51C (4.8%) tumors are HRD

Table 1: BRCA1/RAD51C methylation testing rescue inconclusive Myriad myChoice[®]results

	Myriad myCHOICE [®] score						
Tumor genotype	FAILED & (not done)	NEGATIVE	POSITIVE	Total			
BRCA MUT	19 (5)	15	117	156			
BRCA WT-No Methylation(NM)- score inconclusive	42 (4)			48			
HRD: BRCA WTNM score POS			45	45			
HRP: BRCA WTNM score NEG		187		185			
METHYL	9 (4)	6	66	85			
Total	70 (13)	208	228	519			

Fig4: PFS1 according to tumor genotypes as defined in Table 1 and treatment arms

Fig5: OS according to tumor genotypes as defined in Table 1 and treatment arms

Benefit of adding ola maintenance to bev was similar between patients with *met*-HGOC and those with unmethylated BRCA1/2 WT HRD+ tumors

REFERENCES

• I Ray-Coquard et al. Olaparib plus Bevacizumab as First-Line Maintenance in Ovarian Cancer N Engl J Med 2019

• Tamara Hansmann et al. Constitutive promoter methylation of *BRCA1* and *RAD51C* in patients with familial ovarian cancer and early-onset sporadic breast cancer, Human Molecular Genetics, Volume 21, Issue 21, 1 November 2012, Pages 4669–4679

• Rae Lynn Baldwin et al. BRCA1 Promoter Region Hypermethylation in Ovarian Carcinoma: A Population-based Study1 Cancer Res (2000) 60 (19):

• J.M. Cunningham et al. Clinical characteristics of ovarian cancer classified by BRCA1, BRCA2, and RAD51C status Sci. Rep., 4 (2014), p. 4026